The Kerr–Newman metric is a solution of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding a charged, rotating mass. This solution has not been especially useful for describing astrophysical phenomena, because observed astronomical objects do not possess an appreciable net electric charge. The solution has instead been of primarily theoretical and mathematical interest. (It is assumed that the cosmological constant equals zero which is near enough to the truth.)
In 1965, Ezra "Ted" Newman found the axisymmetric solution of Einstein's field equation for a black hole which is both rotating and electrically charged. This formula for the metric tensor is called the Kerr–Newman metric. It is a generalisation of the Kerr metric for an uncharged spinning point-mass, which had been discovered by Roy Kerr two years earlier.
Four related solutions may be summarized by the following table:
where Q represents the body's electric charge and J represents its spin angular momentum.
The Kerr–Newman metric describes the geometry of spacetime for a rotating charged black hole with mass M, charge Q and angular momentum J. The formula for this metric depends upon what coordinates or coordinate conditions are selected. One way to express this metric is by writing down its line element in a particular set of spherical coordinates, also called Boyer–Lindquist coordinates: