In classical mechanics, the Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force F that varies in strength as the inverse square of the distance r between them. The force may be either attractive or repulsive. The "problem" to be solved is to find the position or speed of the two bodies over time given their masses and initial positions and velocities. Using classical mechanics, the solution can be expressed as a Kepler orbit using six orbital elements.
The Kepler problem is named after Johannes Kepler, who proposed Kepler's laws of planetary motion (which are part of classical mechanics and solve the problem for the orbits of the planets) and investigated the types of forces that would result in orbits obeying those laws (called Kepler's inverse problem).
For a discussion of the Kepler problem specific to radial orbits, see: Radial trajectory. The Kepler problem in general relativity produces more accurate predictions, especially in strong gravitational fields.
The Kepler problem arises in many contexts, some beyond the physics studied by Kepler himself. The Kepler problem is important in celestial mechanics, since Newtonian gravity obeys an inverse square law. Examples include a satellite moving about a planet, a planet about its sun, or two binary stars about each other. The Kepler problem is also important in the motion of two charged particles, since Coulomb’s law of electrostatics also obeys an inverse square law. Examples include the hydrogen atom, positronium and muonium, which have all played important roles as model systems for testing physical theories and measuring constants of nature.