k-space is a formalism widely used in magnetic resonance imaging introduced in 1979 by Likes and in 1983 by Ljunggren and Twieg.
In MRI physics, k-space is the 2D or 3D Fourier transform of the MR image measured. Its complex values are sampled during an MR measurement, in a premeditated scheme controlled by a pulse sequence, i.e. an accurately timed sequence of radiofrequency and gradient pulses. In practice, k-space often refers to the temporary image space, usually a matrix, in which data from digitized MR signals are stored during data acquisition. When k-space is full (at the end of the scan) the data are mathematically processed to produce a final image. Thus k-space holds raw data before reconstruction.
k-space is in spatial frequency domain. Thus if we define and such that
and
where FE refers to frequency encoding, PE to phase encoding, is the sampling time (the reciprocal of sampling frequency), is the duration of GPE, (gamma bar) is the gyromagnetic ratio, m is the sample number in the FE direction and n is the sample number in the PE direction (also known as partition number), the 2D-Fourier Transform of this encoded signal results in a representation of the spin density distribution in two dimensions. Thus position (x,y) and spatial frequency (, ) constitute a Fourier transform pair.