*** Welcome to piglix ***

Johnson circle


In geometry, a set of Johnson circles comprises three circles of equal radius r sharing one common point of intersection H. In such a configuration the circles usually have a total of four intersections (points where at least two of them meet): the common point H that they all share, and for each of the three pairs of circles one more intersection point (referred here as their 2-wise intersection). If any two of the circles happen to osculate, they only have H as a common point, and it will then be considered that H be their 2-wise intersection as well; if they should coincide we declare their 2-wise intersection be the point diametrically opposite H. The three 2-wise intersection points define the reference triangle of the figure. The concept is named after Roger Arthur Johnson.

Property 1 is obvious from the definition. Property 2 is also clear: for any circle of radius r, and any point P on it, the circle of radius 2r centered at P is tangent to the circle in its point opposite to P; this applies in particular to P=H, giving the anticomplementary circle C. Property 3 in the formulation of the homothety immediately follows; the triangle of points of tangency is known as the anticomplementary triangle.

For properties 4 and 5, first observe that any two of the three Johnson circles are interchanged by the reflection in the line connecting H and their 2-wise intersection (or in their common tangent at H if these points should coincide), and this reflection also interchanges the two vertices of the anticomplementary triangle lying on these circles. The 2-wise intersection point therefore is the midpoint of a side of the anticomplementary triangle, and H lies on the perpendicular bisector of this side. Now the midpoints of the sides of any triangle are the images of its vertices by a homothety with factor −½, centered at the barycenter of the triangle. Applied to the anticomplementary triangle, which is itself obtained from the Johnson triangle by a homothety with factor 2, it follows from composition of homotheties that the reference triangle is homothetic to the Johnson triangle by a factor −1. Since such a homothety is a congruence, this gives property 5, and also the Johnson circles theorem since congruent triangles have circumscribed circles of equal radius.


...
Wikipedia

...