*** Welcome to piglix ***

Jensen's formula


In the mathematical field known as complex analysis, Jensen's formula, introduced by Johan Jensen (1899), relates the average magnitude of an analytic function on a circle with the number of its zeros inside the circle. It forms an important statement in the study of entire functions.

Suppose that ƒ is an analytic function in a region in the complex plane which contains the closed disk D of radius r about the origin, a1a2, ..., an are the zeros of ƒ in the interior of D repeated according to multiplicity, and ƒ(0) ≠ 0. Jensen's formula states that

This formula establishes a connection between the moduli of the zeros of the function ƒ inside the disk D and the average of log |f(z)| on the boundary circle |z| = r, and can be seen as a generalisation of the mean value property of harmonic functions. Namely, if f has no zeros in D, then Jensen's formula reduces to

which is the mean-value property of the harmonic function .

An equivalent statement of Jensen's formula that is frequently used is

where denotes the number of zeros of in the disc of radius centered at the origin.


...
Wikipedia

...