*** Welcome to piglix ***

James A. Lake

James A. Lake
Born (1941-08-10) August 10, 1941 (age 75)
Kearney, Nebraska, United States
Fields Evolutionary biology
Institutions University of California, Los Angeles
Alma mater University of Wisconsin
University of Colorado Boulder
Known for Symbiogenesis
Notable awards Darwin–Wallace Medal

James A. Lake (born August 10, 1941, Kearney, Nebraska) is an American evolutionary biologist and a Distinguished Professor of Molecular, Cell, and Developmental Biology and of Human Genetics at UCLA. Lake is best known for the New Animal Phylogeny and for the first three-dimensional structure of the ribosome. He has also made significant contributions to understanding genome evolution across all kingdoms of life, including discovering informational and operational genes, elucidating the complexity hypothesis for gene transfer, rooting the tree of life, and understanding the early transition from prokaryotic to eukaryotic life.

Jim Lake graduated from the University of Colorado, Boulder with a BA in physics in 1963. In 1967 he was awarded a Ph.D. in physics from the University of Wisconsin, Madison on the structure of tRNA. Following postdocs in Molecular Biology at MIT and Harvard Medical School, an Assistant Professorship of Cell Biology in George Palade’s Department at Rockefeller University (1970–73) and an Associate Professorship of Cell Biology at NYU Medical School (1973–76), he became a Professor of Molecular Biology in Biology at UCLA in 1976 and is currently a Distinguished Professor of Molecular, Cell, and Developmental Biology and of Human Genetics.

Lake's research focuses in four areas: prokaryotic ancestors of eukaryotes, evidence for early prokaryotic endosymbioses,genomic analyses, and rooting of the biological tree of life.

In 2011, Lake was presented the Darwin-Wallace Medal by the Linnean Society of London for elucidating the new animal phylogeny. The Medal is awarded to individuals who have made major advances in evolutionary biology. Lake has made a number of highly significant contributions toward understanding diverse aspects of genome evolution across all kingdoms of life. These include discovering informational and operational genes, developing the complexity hypothesis for horizontal/lateral gene transfer, and rooting the tree of life, topics on which he has published over 160 papers.


...
Wikipedia

...