In mathematical set theory, an ω-Jónsson function for a set x of ordinals is a function with the property that, for any subset y of x with the same cardinality as x, the restriction of to is surjective on . Here denotes the set of strictly increasing sequences of members of , or equivalently the family of subsets of with order type , using a standard notation for the family of subsets with a given order type. Jónsson functions are named for Bjarni Jónsson.