*** Welcome to piglix ***

Iterative


Iteration is the act of repeating a process, either to generate an unbounded sequence of outcomes, or with the aim of approaching a desired goal, target or result. Each repetition of the process is also called an "iteration", and the results of one iteration are used as the starting point for the next iteration.

In the context of mathematics or computer science, iteration (along with the related technique of recursion) is a standard building block of algorithms.

Iteration in mathematics may refer to the process of iterating a function i.e. applying a function repeatedly, using the output from one iteration as the input to the next. Iteration of apparently simple functions can produce complex behaviours and difficult problems - for examples, see the Collatz conjecture and juggler sequences.

Another use of iteration in mathematics is in iterative methods which are used to produce approximate numerical solutions to certain mathematical problems. Newton's method is an example of an iterative method. Manual calculation of a number's square root is a common use and a well-known example.

Iteration in computing is the technique marking out of a block of statements within a computer program for a defined number of repetitions. That block of statements is said to be iterated; a computer scientist might also refer to that block of statements as an "iteration".

The pseudocode below is an example of iteration; the line of code between the brackets of the for loop will "iterate" three times:

It is permissible, and often necessary, to use values from other parts of the program outside of the bracketed block of statements in order to perform the desired function. In the example above, the line of code is using the value of i as it increments.

In some schools of pedagogy, iterations are used to describe the process of teaching or guiding students to repeat experiments, assessments, or projects, until more accurate results are found, or the student has mastered the technical skill. This idea is found in the old adage, "Practice makes perfect." In particular, "iterative" is defined as the "process of learning and development that involves cyclical inquiry, enabling multiple opportunities for people to revisit ideas and critically reflect on their implication."


...
Wikipedia

...