*** Welcome to piglix ***

Isotopes of strontium

Main isotopes of strontium
iso NA half-life DM DE (MeV) DP
82Sr syn 25.36 d ε 82Rb
83Sr syn 1.35 d ε 83Rb
β+ 1.23 83Rb
γ 0.76, 0.36
84Sr 0.56% is stable with 46 neutrons
85Sr syn 64.84 d ε 85Rb
γ 0.514D
86Sr 9.86% is stable with 48 neutrons
87Sr 7.00% is stable with 49 neutrons
88Sr 82.58% is stable with 50 neutrons
89Sr syn 50.52 d ε 1.49 89Rb
β 0.909D 89Y
90Sr trace 28.90 y β 0.546 90Y
Standard atomic weight (Ar)
  • 87.62(1)

The alkaline earth metal strontium (38Sr) has four stable, naturally occurring isotopes: 84Sr (0.56%), 86Sr (9.86%), 87Sr (7.0%) and 88Sr (82.58%). It's standard atomic weight is 87.62(1).

Only 87Sr is radiogenic; it is produced by decay from the radioactive alkali metal 87Rb, which has a half-life of 4.88 × 1010 years (i.e. more than three times longer than the current age of the universe). Thus, there are two sources of 87Sr in any material: primordial, formed during nucleosynthesis along with 84Sr, 86Sr and 88Sr; and that formed by radioactive decay of 87Rb. The ratio 87Sr/86Sr is the parameter typically reported in geologic investigations; ratios in minerals and rocks have values ranging from about 0.7 to greater than 4.0. Because strontium has an electron configuration similar to that of calcium, it readily substitutes for Ca in minerals.

In addition to the four stable isotopes, thirty-one unstable isotopes of Strontium are known to exist (see Table, below): the longest-lived of these are 90Sr with a half-life of 28.9 years and 85Sr with a half-life of 64.853 days. Of importance are strontium-89 (89Sr) with a half-life of 50.57 days, and strontium-90 (90Sr). They decay by emitting an electron and an antineutrino () in beta decay decay) to become yttrium:


...
Wikipedia

...