*** Welcome to piglix ***

Isotopes of cobalt

Main isotopes of cobalt
iso NA half-life DM DE (MeV) DP
56Co syn 77.27 d ε 4.566 56Fe
57Co syn 271.79 d ε 0.836 57Fe
58Co syn 70.86 d ε 2.307 58Fe
59Co 100% is stable with 32 neutrons
60Co syn 5.2714 y β, γ 2.824 60Ni
Standard atomic weight (Ar)
  • 58.933194(4)

Naturally occurring cobalt (27Co) is composed of 1 stable isotope, 59Co. 28 radioisotopes have been characterized with the most stable being 60Co with a half-life of 5.2714 years, 57Co with a half-life of 271.8 days, 56Co with a half-life of 77.27 days, and 58Co with a half-life of 70.86 days. All of the remaining radioactive isotopes have half-lives that are less than 18 hours and the majority of these have half-lives that are less than 1 second. This element also has 11 meta states, all of which have half-lives less than 15 minutes.

The isotopes of cobalt range in atomic weight from 47Co to 75Co. The primary decay mode for isotopes with atomic mass unit values less than that of the most abundant stable isotope, 59Co, is electron capture and the primary mode of decay for those of greater than 59 atomic mass units is beta decay. The primary decay products before 59Co are iron isotopes and the primary products after are nickel isotopes.

Radioactive isotopes can be produced by various nuclear reactions. For example, the isotope 57Co is produced by cyclotron irradiation of iron. The principal reaction involved is the (d,n) reaction 56Fe + 2H → n + 57Co.

Cobalt-60 (Co-60 or 60Co) is a radioactive metal that is used in radiotherapy. It produces two gamma rays with energies of 1.17 MeV and 1.33 MeV. The 60Co source is about 2 cm in diameter and as a result produces a geometric penumbra, making the edge of the radiation field fuzzy. The metal has the unfortunate habit of producing a fine dust, causing problems with radiation protection. The 60Co source is useful for about 5 years but even after this point is still very radioactive, and so cobalt machines have fallen from favor in the Western world where linacs are common.


...
Wikipedia

...