*** Welcome to piglix ***

Inward potassium rectifier current

Inward rectifier potassium channel
PDB 1p7b EBI.jpg
crystal structure of an inward rectifier potassium channel
Identifiers
Symbol IRK
Pfam PF01007
Pfam clan CL0030
InterPro IPR013521
SCOP 1n9p
SUPERFAMILY 1n9p
TCDB 1.A.2
OPM superfamily 8
OPM protein 3sya
Inward rectifier potassium channel N-terminal
Identifiers
Symbol IRK_N
Pfam PF08466
InterPro IPR013673

Inward-rectifier potassium channels (Kir, IRK) are a specific subset of potassium channels. To date, seven subfamilies have been identified in various mammalian cell types, plants, and bacteria. They are the targets of multiple toxins, and malfunction of the channels has been implicated in several diseases. IRK channels possess a pore domain, homologous to that of voltage-gated ion channels, and flanking transmembrane segments (TMSs). They may exist in the membrane as homo- or heterooligomers and each monomer possesses between 2 and 4 TMSs. In terms of function, these proteins transport potassium (K+), with a greater tendency for K+ uptake than K+ export.

A channel that is "inwardly-rectifying" is one that passes current (positive charge) more easily in the inward direction (into the cell) than in the outward direction (out of the cell). It is thought that this current may play an important role in regulating neuronal activity, by helping to stabilize the resting membrane potential of the cell.

By convention, inward current (positive charge moving into the cell) is displayed in voltage clamp as a downward deflection, while an outward current (positive charge moving out of the cell) is shown as an upward deflection. At membrane potentials negative to potassium's reversal potential, inwardly rectifying K+ channels support the flow of positively charged K+ ions into the cell, pushing the membrane potential back to the resting potential. This can be seen in figure 1: when the membrane potential is clamped negative to the channel's resting potential (e.g. -60 mV), inward current flows (i.e. positive charge flows into the cell). However, when the membrane potential is set positive to the channel's resting potential (e.g. +60 mV), these channels pass very little current. Simply put, this channel passes much more current in the inward direction than the outward one, at its operating voltage range. These channels are not perfect rectifiers, as they can pass some outward current in the voltage range up to about 30 mV above resting potential.

These channels differ from the potassium channels that are typically responsible for repolarizing a cell following an action potential, such as the delayed rectifier and A-type potassium channels. Those more "typical" potassium channels preferentially carry outward (rather than inward) potassium currents at depolarized membrane potentials, and may be thought of as "outwardly rectifying." When first discovered, inward rectification was named "anomalous rectification" to distinguish it from outward potassium currents.


...
Wikipedia

...