*** Welcome to piglix ***

Inverse trigonometric function


In mathematics, the inverse trigonometric functions (occasionally called cyclometric functions) are the inverse functions of the trigonometric functions (with suitably restricted domains). Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

There are several notations used for the inverse trigonometric functions.

The most common convention is to name inverse trigonometric functions using an arc- prefix, e.g., arcsin(x), arccos(x), arctan(x), etc. This convention is used throughout the article. When measuring in radians, an angle of θ radians will correspond to an arc whose length is rθ, where r is the radius of the circle. Thus, in the unit circle, "the arc whose cosine is x" is the same as "the angle whose cosine is x", because the length of the arc of the circle in radii is the same as the measurement of the angle in radians. Similarly, in computer programming languages the inverse trigonometric functions are usually called asin, acos, atan.

The notations sin−1(x), cos−1(x), tan−1(x), etc., as introduced by John Herschel in 1813, are often used as well, but this convention logically conflicts with the common semantics for expressions like sin2(x), which refer to numeric power rather than function composition, and therefore may result in confusion between multiplicative inverse and compositional inverse. The confusion is somewhat ameliorated by the fact that each of the reciprocal trigonometric functions has its own name—for example, (cos(x))−1 = sec(x). Nevertheless, certain authors advise against using it for its ambiguity.


...
Wikipedia

...