*** Welcome to piglix ***

Inverse scattering transform


In mathematics, the inverse scattering transform is a method for solving some non-linear partial differential equations. It is one of the most important developments in mathematical physics in the past 40 years. The method is a non-linear analogue, and in some sense generalization, of the Fourier transform, which itself is applied to solve many linear partial differential equations. The name "inverse scattering method" comes from the key idea of recovering the time evolution of a potential from the time evolution of its scattering data: inverse scattering refers to the problem of recovering a potential from its scattering matrix, as opposed to the direct scattering problem of finding the scattering matrix from the potential.

The inverse scattering transform may be applied to many of the so-called exactly solvable models, that is to say completely integrable infinite dimensional systems.

The inverse scattering transform was first introduced by Clifford S. Gardner, John M. Greene, and Martin D. Kruskal et al. (1967, 1974) for the Korteweg–de Vries equation, and soon extended to the nonlinear Schrödinger equation, the Sine-Gordon equation, and the Toda lattice equation. It was later used to solve many other equations, such as the Kadomtsev–Petviashvili equation, the Ishimori equation, the Dym equation, and so on. A further family of examples is provided by the Bogomolny equations (for a given gauge group and oriented Riemannian 3-fold), the solutions of which are magnetic monopoles.


...
Wikipedia

...