Inverse gas chromatography is a physical characterization technique that is used in the analysis of the surfaces of solids. Traditional GC is an analytical technique.
Inverse gas chromatography or IGC is a highly sensitive and versatile gas phase technique developed over 40 years ago to study the surface and bulk properties of particulate and fibrous materials. In IGC the roles of the stationary (solid) and mobile (gas or vapor) phases are inverted from traditional analytical gas chromatography (GC). In GC, a standard column is used to separate and characterize several gases and/or vapors. In IGC, a single gas or vapor (probe molecule) is injected into a column packed with the solid sample under investigation. Instead of an analytical technique, IGC is considered a materials characterization technique.
During an IGC experiment a pulse or constant concentration of a known gas or vapor (probe molecule) is injected down the column at a fixed carrier gas flow rate. The retention time of the probe molecule is then measured by traditional GC detectors (i.e. flame ionization detector or thermal conductivity detector). Measuring how the retention time changes as a function of probe molecule chemistry, probe molecule size, probe molecule concentration, column temperature, or carrier gas flow rate can elucidate a wide range of physico-chemical properties of the solid under investigation. Several in depth reviews of IGC have been published previously.
IGC experiments are typically carried out at infinite dilution where only small amounts of probe molecule are injected. This region is also called Henry's law region or linear region of the sorption isotherm. At infinite dilution probe-probe interactions are assumed negligible and any retention is only due to probe-solid interactions. The resulting retention volume, VRo, is given by the following equation:
where j is the James–Martin pressure drop correction, m is the sample mass, F is the carrier gas flow rate at standard temperature and pressure, tR is the gross retention time for the injected probe, to is the retention time for a non-interaction probe (i.e. dead-time), and T is the absolute temperature.
The main application of IGC is to measure the surface energy of solids (fibers, particulates, and films). Surface energy is defined as the amount of energy required to create a unit area of a solid surface; analogous to surface tension of a liquid. Also, the surface energy can be defined as the excess energy at the surface of a material compared to the bulk. The surface energy (γ) is directly related to the thermodynamic work of adhesion (Wadh) between two materials as given by the following equation: