*** Welcome to piglix ***

Inverse dynamics


Inverse dynamics is an inverse problem. It commonly refers to either inverse rigid body dynamics or inverse structural dynamics. Inverse rigid-body dynamics is a method for computing forces and/or moments of force (torques) based on the kinematics (motion) of a body and the body's inertial properties (mass and moment of inertia). Typically it uses link-segment models to represent the mechanical behaviour of interconnected segments, such as the limbs of humans, animals or robots, where given the kinematics of the various parts, inverse dynamics derives the minimum forces and moments responsible for the individual movements. In practice, inverse dynamics computes these internal moments and forces from measurements of the motion of limbs and external forces such as ground reaction forces, under a special set of assumptions.

The fields of robotics and biomechanics constitute the major application areas for inverse dynamics.

Within robotics, inverse dynamics algorithms are used to calculate the torques that a robot's motors must deliver to make the robot's end-point move in the way prescribed by its current task. The "inverse dynamics problem" in Robotics Engineering was solved by Eduardo Bayo in 1987. This solution calculates how each of the numerous electric motors that control a robot arm must move to produce a particular action. Humans can perform very complicated and precise movements, such as controlling the tip of a fishing rod well enough to cast the bait accurately. Before the arm moves, the brain calculates the necessary movement of each muscle involved and tells the muscles what to do as the arm swings. In the case of a robot arm, the "muscles" are the electric motors which must turn by a given amount at a given moment. Each motor must be supplied with just the right amount of electric current, at just the right time. Researchers can predict the motion of a robot arm if they know how the motors will move. This is known as the forward dynamics problem. Until this discovery, they had not been able to work backwards to calculate the movements of the motors required to generate a particular complicated motion., Bayo's work began with the application of frequency-domain methods to the inverse dynamics of single-link flexible robots. This approach yielded non-causal exact solutions due to the right-half plane zeros in the hub-torque-to-tip transfer functions. Extending this method to the nonlinear multi-flexible-link case was of particular importance to robotics. When combined with passive joint control in a collaborative effort with a control group, Bayo's inverse dynamics approach led to exponentially stable tip-tracking control for flexible multi-link robots.


...
Wikipedia

...