*** Welcome to piglix ***

Inulin

Inulin
Inulin strukturformel.png
Identifiers
9005-80-5 YesY
ChEMBL ChEMBL1201646 N
DrugBank DB00638 YesY
ECHA InfoCard 100.029.701
PubChem 24763
UNII JOS53KRJ01 YesY
Properties
C6nH10n+2O5n+1
Molar mass Polymer; depends on n
Pharmacology
V04CH01 (WHO)
Hazards
NFPA 704
Flammability code 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g., canola oil Health code 1: Exposure would cause irritation but only minor residual injury. E.g., turpentine Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Inulins are a group of naturally occurring polysaccharides produced by many types of plants, industrially most often extracted from chicory. The inulins belong to a class of dietary fibers known as fructans. Inulin is used by some plants as a means of storing energy and is typically found in roots or rhizomes. Most plants that synthesize and store inulin do not store other forms of carbohydrate such as starch. Using inulin to measure renal function is the "gold standard" for comparison with other means of estimating creatinine clearance.

Inulin is a natural storage carbohydrate present in more than 36,000 species of plants, including wheat, onion, bananas, garlic, asparagus, Jerusalem artichoke and chicory. For these plants, inulin is used as an energy reserve and for regulating cold resistance. Because it is soluble in water, it is osmotically active. The plants can change the osmotic potential of cells by changing the degree of polymerization of inulin molecules with hydrolysis. By changing osmotic potential without changing the total amount of carbohydrate, plants can withstand cold and drought during winter periods.

Inulin was discovered in 1804 by German scientist Valentin Rose. He found “a peculiar substance” from Inula helenium roots by boiling water extraction. The substance was named inulin because of I. helenium, but it is also called helenin, alatin, and meniantin. Indigestible polysaccharides were of great scientific concern in the beginning of the 20th century. Irvine used chemical methods like methylation to study the molecular structure of inulin, and designed the isolation method for this new anhydrofructose. During studies of renal tubules in the 1930s, researchers searched for a substance that can serve as a biomarker that is not reabsorbed or secreted after introduction into tubules. Richards introduced inulin because of its high molecular weight and its resistance to enzymes. Today, inulin is used as an active ingredient for functional foods, and it is also used to determine the glomerular filtration rate.


...
Wikipedia

...