Identifiers | |
---|---|
9005-80-5 | |
ChEMBL | ChEMBL1201646 |
DrugBank | DB00638 |
ECHA InfoCard | 100.029.701 |
PubChem | 24763 |
UNII | JOS53KRJ01 |
Properties | |
C6nH10n+2O5n+1 | |
Molar mass | Polymer; depends on n |
Pharmacology | |
V04CH01 (WHO) | |
Hazards | |
NFPA 704 | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Inulins are a group of naturally occurring polysaccharides produced by many types of plants, industrially most often extracted from chicory. The inulins belong to a class of dietary fibers known as fructans. Inulin is used by some plants as a means of storing energy and is typically found in roots or rhizomes. Most plants that synthesize and store inulin do not store other forms of carbohydrate such as starch. Using inulin to measure renal function is the "gold standard" for comparison with other means of estimating creatinine clearance.
Inulin is a natural storage carbohydrate present in more than 36,000 species of plants, including wheat, onion, bananas, garlic, asparagus, Jerusalem artichoke and chicory. For these plants, inulin is used as an energy reserve and for regulating cold resistance. Because it is soluble in water, it is osmotically active. The plants can change the osmotic potential of cells by changing the degree of polymerization of inulin molecules with hydrolysis. By changing osmotic potential without changing the total amount of carbohydrate, plants can withstand cold and drought during winter periods.
Inulin was discovered in 1804 by German scientist Valentin Rose. He found “a peculiar substance” from Inula helenium roots by boiling water extraction. The substance was named inulin because of I. helenium, but it is also called helenin, alatin, and meniantin. Indigestible polysaccharides were of great scientific concern in the beginning of the 20th century. Irvine used chemical methods like methylation to study the molecular structure of inulin, and designed the isolation method for this new anhydrofructose. During studies of renal tubules in the 1930s, researchers searched for a substance that can serve as a biomarker that is not reabsorbed or secreted after introduction into tubules. Richards introduced inulin because of its high molecular weight and its resistance to enzymes. Today, inulin is used as an active ingredient for functional foods, and it is also used to determine the glomerular filtration rate.