In the mathematical study of metric spaces, one can consider the arclength of paths in the space. If two points are at a given distance from each other, it is natural to expect that one should be able to get from the first point to the second along a path whose arclength is equal to (or very close to) that distance. The distance between two points of a metric space relative to the intrinsic metric is defined as the infimum of the lengths of all paths from the first point to the second. A metric space is a length metric space if the intrinsic metric agrees with the original metric of the space.
Let be a metric space, i.e., is a collection of points (such as all of the points in the plane, or all points on the circle) and is a function that provides us with the distance between points . We define a new metric on , known as the induced intrinsic metric, as follows: is the infimum of the lengths of all paths from to .