In telecommunication, Intersymbol Interference (ISI) is a form of distortion of a signal in which one symbol interferes with subsequent symbols. This is an unwanted phenomenon as the previous symbols have similar effect as noise, thus making the communication less reliable. The spreading of the pulse beyond its allotted time interval causes it to interfere with neighboring pulses. ISI is usually caused by multipath propagation or the inherent non-linear frequency response of a channel causing successive symbols to "blur" together.
The presence of ISI in the system introduces errors in the decision device at the receiver output. Therefore, in the design of the transmitting and receiving filters, the objective is to minimize the effects of ISI, and thereby deliver the digital data to its destination with the smallest error rate possible.
Ways to fight intersymbol interference include adaptive equalization and error correcting codes.
One of the causes of intersymbol interference is multipath propagation in which a wireless signal from a transmitter reaches the receiver via multiple paths. The causes of this include reflection (for instance, the signal may bounce off buildings), refraction (such as through the foliage of a tree) and atmospheric effects such as atmospheric ducting and ionospheric reflection. Since the various paths can be of different lengths, this results in the different versions of the signal arriving at the receiver at different times. These delays mean that part or all of a given symbol will be spread into the subsequent symbols, thereby interfering with the correct detection of those symbols. Additionally, the various paths often distort the amplitude and/or phase of the signal, thereby causing further interference with the received signal.