The interplanetary dust cloud is cosmic dust (small particles floating in outer space) which pervades the space between planets in the Solar System and in other planetary systems. It has been studied for many years in order to understand its nature, origin, and relationship to larger bodies.
In the Solar System, the interplanetary dust particles not only scatter solar light (called the "zodiacal light", which is confined to the ecliptic plane), but also produce thermal emission, which is the most prominent feature of the night-sky light in the 5–50 micrometer wavelength domain (Levasseur-Regourd, A.C. 1996). The grains characterizing the infrared emission near the Earth's orbit have typical sizes of 10–100 micrometers (Backman, D., 1997). The total mass of the interplanetary dust cloud is about the mass of an asteroid of radius 15 km (with density of about 2.5 g/cm3).
The sources of interplanetary dust particles (IDPs) include at least: asteroid collisions, cometary activity and collisions in the inner Solar System, Kuiper belt collisions, and interstellar medium grains (Backman, D., 1997). Indeed, one of the longest-standing controversies debated in the interplanetary dust community revolves around the relative contributions to the interplanetary dust cloud from asteroid collisions and cometary activity.
The main physical processes "affecting" (destruction or expulsion mechanisms) interplanetary dust particles are: expulsion by radiation pressure, inward Poynting-Robertson (PR) radiation drag, solar wind pressure (with significant electromagnetic effects), sublimation, mutual collisions, and the dynamical effects of planets (Backman, D., 1997).