*** Welcome to piglix ***

International System of Electrical and Magnetic Units


The International System of Electrical and Magnetic Units is an obsolete system of units used solely for measuring electrical and magnetic quantities. It was introduced by the Fourth International Electrical Congress (Chicago, 1893) and modified in 1908. It was rendered obsolete by the inclusion of electromagnetic units in the International System of Units (SI) in 1948.

The link between electromagnetic units and the more familiar units of length, mass and time was first demonstrated by Gauss in 1832 with his measurement of the Earth's magnetic field, and the principle was extended to electrical measurements by Neumann in 1845. A complete system of metric electrical and magnetic units was proposed by Weber in 1851.

The development of the electric telegraph (an invention of Gauss and Weber) demonstrated the need for accurate electrical measurements. At the behest of Thomson, the British Association for the Advancement of Science (B.A.) set up a committee in 1862 to examine the options for standardizing electrical and magnetic units. After much discussion, the committee decided to adapt Weber's proposals to the CGS system of units: however the resulting "absolute" units were both difficult to realize and (often) impractically small. To overcome these handicaps, the B.A. also proposed a set of "practical" or "reproduceable" units, which were not directly linked to the CGS system but which were, as near as experimental accuracy allowed, equal to multiples of the corresponding CGS units.

The B.A. system of practical units gained considerable international support, and was adopted – with one important modification – by the First International Conference of Electricians (Paris, 1881). The British Association had constructed an artefact representation of the ohm (a standard length of resistance wire which had a resistance of 109 CGS units of electric resistance, that is one ohm) whereas the international conference preferred a method of realization that could be repeated in different laboratories in different countries. The chosen method was based on the resistivity of mercury, by measuring the resistance of a column of mercury of specified dimensions (106 cm × 1 mm2): however, the chosen length of column was almost 3 millimetres too short, leading to a difference of 0.28% between the new practical units and the CGS units which were supposedly their basis.


...
Wikipedia

...