Internal tides are generated as the surface tides move stratified water up and down sloping topography, which produces a wave in the ocean interior. So internal tides are internal waves at a tidal frequency. The other major source of internal waves is the wind which produces internal waves near the inertial frequency. When a small water parcel is displaced from its equilibrium position, it will return either downwards due to gravity or upwards due to buoyancy. The water parcel will overshoot its original equilibrium position and this disturbance will set off an internal gravity wave. Munk (1981) notes, "Gravity waves in the ocean's interior are as common as waves at the sea surface-perhaps even more so, for no one has ever reported an interior calm."
The surface tide propagates as a wave, in which water parcels in the whole water column oscillate in the same direction at a given phase (i.e., in the trough or at the crest, Fig. 1, top). At the simplest level, an internal wave can be thought of as an interfacial wave (Fig. 1, bottom). If there are two levels in the ocean, such as a warm surface layer and cold deep layer separated by a thermocline,then motions on the interface are possible. The interface movement is large compared to surface movement. The restoring force for internal waves and tides is still gravity but its effect is reduced because the densities of the 2 layers are relatively similar compared to the large density difference at the air-sea interface. Thus larger displacements are possible inside the ocean than at the sea surface.
Tides occur mainly at diurnal and semidiurnal periods. The principal lunar semidiurnal constituent is known as M2 and generally has the largest amplitudes. (See external links for more information.)
The largest internal tides are generated at steep, midocean topography such as the Hawaiian Ridge, Tahiti, the Macquarie Ridge, and submarine ridges in the Luzon Strait. Continental slopes such as the Australian North West Shelf also generate large internal tides. These internal tide may propagate onshore and dissipate much like surface waves. Or internal tides may propagate away from the topography into the open ocean. For tall, steep, midocean topography, such as the Hawaiian Ridge, it is estimated that about 85% of the energy in the internal tide propagates away into the deep ocean with about 15% of its energy being lost within about 50 km of the generation site. The lost energy contributes to turbulence and mixing near the generation sites. It is not clear where the energy that leaves the generation site is dissipated, but there are 3 possible processes: 1) the internal tides scatter and/or break at distant midocean topography, 2) interactions with other internal waves remove energy from the internal tide, or 3) the internal tides shoal and break on continental shelves.