*** Welcome to piglix ***

Interference visibility


The interferometric visibility (also known as interference visibility and fringe visibility, or just visibility when in context) quantifies the contrast of interference in any system which has wave-like properties, such as optics, quantum mechanics, water waves, or electrical signals. Generally, two or more waves are combined and as the phase difference between them varies, the power or intensity (probability or population in quantum mechanics) of the resulting wave oscillates, forming an interference pattern. The pattern may be visible all at once because the phase difference varies as a function of space, as in a 2-slit experiment. Alternately, the phase difference may be manually controlled by the operator, for example by adjusting a vernier knob in an interferometer. The ratio of the size or amplitude of these oscillations to the sum of the powers of the individual waves is defined as the visibility.

The interferometric visibility gives a practical way to measure the coherence of two waves (or one wave with itself). A theoretical definition of the coherence is given by the degree of coherence, using the notion of correlation.

In linear optical interferometers (like the Mach-Zehnder interferometer, Michelson interferometer, and Sagnac interferometer), interference manifests itself as intensity oscillations over time or space, also called fringes. Under these circumstances, the interferometric visibility is also known as the "Michelson visibility" or the "fringe visibility." For this type of interference, the sum of the intensities (powers) of the two interfering waves equals the average intensity over a given time or space domain. The visibility is written as:


...
Wikipedia

...