*** Welcome to piglix ***

Intel iPSC


The Intel Personal SuperComputer (Intel iPSC) was a product line of parallel computers in the 1980s and 1990s. The iPSC/1 was superseded by the Intel iPSC/2, and then the Intel iPSC/860.

In 1984, Justin Rattner became manager of the Intel Scientific Computers group in Beaverton, Oregon. He hired a team that included mathematician Cleve Moler. The iPSC used a hypercube of connections between the processors internally inspired by the Caltech Cosmic Cube research project. For that reason, it was configured with nodes numbering with power of two, which correspond to the corners of hypercubes of increasing dimension.

Intel announced the iPSC/1 in 1985, with 32 to 128 nodes connected with Ethernet into a hypercube. The system was managed by a personal computer of the PC/AT era running Xenix, the "cube manager". Each node had a 80286 CPU with 80287 math coprocessor, 512K of RAM, and eight Ethernet ports (seven for the hypercube interconnect, and one to talk to the cube manager).

A message passing interface called NX that was developed by Paul Pierce evolved throughout the life of the iPSC line. Because only the cube manager had connections to the outside world, developing and debugging applications was difficult.

The basic models were the iPSC/d5 (five-dimension hypercube with 32 nodes), iPSC/d6 (six dimensions with 64 nodes), and iPSC/d7 (seven dimensions with 128 nodes). Each cabinet had 32 nodes, and prices ranged up to about half a million dollars for the four cabinet iPSC/d7 model. Extra memory (iPSC-MX) and vector processor (iPSC-VX) models were also available, in the three sizes. A four-dimensional hypercube was also available (iPSC/d4), with 16 nodes.

iPSC/1 was called the first parallel computer built from commercial off-the-shelf parts. This allowed it to reach the market about the same time as its competitor from nCUBE, even though the nCUBE project had started earlier. Each iPSC cabinet was (overall) 127 cm x 41 cm x 43 cm. Total computer performance was estimated at 2 MFLOPS. Memory width was 16-bit.


...
Wikipedia

...