*** Welcome to piglix ***

Intel QuickPath Interconnect


The Intel QuickPath Interconnect (QPI) is a point-to-point processor interconnect developed by Intel which replaced the front-side bus (FSB) in Xeon, Itanium, and certain desktop platforms starting in 2008. Prior to the name's announcement, Intel referred to it as Common System Interface (CSI). Earlier incarnations were known as Yet Another Protocol (YAP) and YAP+.

QPI 1.1 is a significantly revamped version introduced with Sandy Bridge-EP (Romley platform).

QPI will be replaced by Intel UltraPath Interconnect (UPI) in future Skylake EX/EP Xeon processors based on LGA 3647 socket.

Although sometimes called a "bus", QPI is a point-to-point interconnect. It was designed to compete with HyperTransport that had been used by Advanced Micro Devices (AMD) since around 2003. Intel developed QPI at its Massachusetts Microprocessor Design Center (MMDC) by members of what had been the Alpha Development Group, which Intel had acquired from Compaq and HP and in turn originally came from Digital Equipment Corporation (DEC). Its development had been reported as early as 2004.

Intel first delivered it for desktop processors in November 2008 on the Intel Core i7-9xx and X58 chipset. It was released in Xeon processors code-named Nehalem in March 2009 and Itanium processors in February 2010 (code named Tukwila).

The QPI is an element of a system architecture that Intel calls the QuickPath architecture that implements what Intel calls QuickPath technology. In its simplest form on a single-processor motherboard, a single QPI is used to connect the processor to the IO Hub (e.g., to connect an Intel Core i7 to an X58). In more complex instances of the architecture, separate QPI link pairs connect one or more processors and one or more IO hubs or routing hubs in a network on the motherboard, allowing all of the components to access other components via the network. As with HyperTransport, the QuickPath Architecture assumes that the processors will have integrated memory controllers, and enables a non-uniform memory access (NUMA) architecture.


...
Wikipedia

...