*** Welcome to piglix ***

Integrality


In commutative algebra, an element b of a commutative ring B is said to be integral over A, a subring of B, if there are n ≥ 1 and such that

That is to say, b is a root of a monic polynomial over A. If every element of B is integral over A, then it is said that B is integral over A, or equivalently B is an integral extension of A. If A, B are fields, then the notions of "integral over" and of an "integral extension" are precisely "algebraic over" and "algebraic extensions" in field theory (since the root of any polynomial is the root of a monic polynomial).

The special case of an integral element of greatest interest in number theory is that of complex numbers integral over Z; in this context, they are usually called algebraic integers (e.g., ). The algebraic integers in a finite extension field k of the rationals Q form a subring of k, called the ring of integers of k, a central object of study in algebraic number theory.


...
Wikipedia

...