*** Welcome to piglix ***

Insect migration


Insect migration is the seasonal movement of insects, particularly those by species of dragonflies, beetles, butterflies and moths. The distance can vary with species and in most cases these movements involve large numbers of individuals. In some cases the individuals that migrate in one direction may not return and the next generation may instead migrate in the opposite direction. This is a significant difference from bird migration.

All insects move to some extent. The range of movement can vary from within a few centimeters for some sucking insects and wingless aphids to thousands of kilometres in the case of other insects such as locusts, butterflies and dragonflies. The definition of migration is therefore particularly difficult in the context of insects. A behaviour oriented definition proposed is

Migratory behaviour is persistent and straightened-out movement effected by the animal's own locomotory exertions or by its active embarkation on a vehicle. It depends upon some temporary inhibition of station-keeping responses but promotes their eventual disinhibition and recurrence.

This definition disqualifies movements made in the search of resources and which are terminated upon finding of the resource. Migration involves longer distance movement and these movements are not affected by the availability of the resource items. All cases of long distance insect migration concern winged insects.

Migrating butterflies fly within a boundary layer, with a specific upper limit above the ground. The air speeds in this region are typically lower than the flight speed of the insect. These 'boundary-layer' migrants include the larger day-flying insects, and their low-altitude flight is obviously easier to observe than that of most high-altitude windborne migrants.

Many migratory species tend to have polymorphic forms, a migratory one and a resident phase. The migratory phases are marked by their well developed and long wings. Such polymorphism is well known in aphids and grasshoppers. In the migratory locusts, there are distinct long and short-winged forms.

The energetic cost of migration has been studied in the context of life-history strategies. It has been suggested that adaptations for migration would be more valuable for insects that live in habitats where resource availability changes seasonally. Others have suggested that species living in isolated islands of suitable habitats are more likely to evolve migratory strategies. The role of migration in gene flow has also been studied in many species. Parasite loads affect migration. Severely infected individuals are weak and have shortened lifespans. Infection creates an effect known as culling whereby migrating animals are less likely to complete the migration. This results in populations with lower parasite loads.


...
Wikipedia

...