In complex geometry, a part of mathematics, the term Inoue surface denotes several complex surfaces of Kodaira class VII. They are named after Masahisa Inoue, who gave the first non-trivial examples of Kodaira class VII surfaces in 1974.
The Inoue surfaces are not Kähler manifolds.
Inoue introduced three families of surfaces, S0, S+ and S−, which are compact quotients of (a product of a complex plane by a half-plane). These Inoue surfaces are solvmanifolds. They are obtained as quotients of by a solvable discrete group which acts holomorphically on .