Inlet cones (sometimes called shock cones or inlet centerbodies) are a component of some supersonic aircraft and missiles. They are primarily used on ramjets, such as the D-21 Tagboard and Lockheed X-7. Some turbojet aircraft including the Su-7, MiG-21, English Electric Lightning, and SR-71 also use an inlet cone.
The main purpose of an inlet cone is to slow the flow of air from supersonic flight speed to a subsonic speed before it enters the engine. Except for scramjet engines, all airbreathing jet engines need subsonic airflow to operate properly, and require a diffuser to prevent supersonic airflow inside the engine. At supersonic flight speeds a conical shock wave, sloping rearwards, forms at the apex of the cone. Air passing through the conical shock wave (and subsequent reflections) slows to a low supersonic speed. The air then passes through a strong normal shock wave, within the diffuser passage, and exits at a subsonic velocity. The resulting intake system is more efficient (in terms of pressure recovery) than the much simpler pitot intake.
The inlet cone is shaped so that the shock wave that forms on its apex is directed to the lip of the intake; this allows the intake to operate properly in supersonic flight. As speed increases, the shock wave becomes increasingly more oblique (the cone gets narrower). For higher flight speeds inlet cones are designed to move axially to control how the capture area varies with the duct internal throat area. For best intake operation this required area ratio gets bigger with increasing flight Mach number, hence the large inlet cone movement on the SR-71 which had to perform well from zero to Mach 3.2.
At subsonic flight speeds, the conical inlet operates much like a pitot intake or subsonic diffuser. However, as the vehicle goes supersonic a conical shock wave appears, emanating from the cone apex. The flow area through the shock wave decreases and the air is compressed. As the flight Mach number increases, the conical shock wave becomes more oblique and eventually impinges on the intake lip.