*** Welcome to piglix ***

Inhomogeneous ordinary differential equation


In mathematics, an ordinary differential equation (ODE) is a differential equation containing one or more functions of one independent variable and its derivatives. The term ordinary is used in contrast with the term partial differential equation which may be with respect to more than one independent variable.

ODEs that are linear differential equations have exact closed-form solutions that can be added and multiplied by coefficients. By contrast, ODEs that lack additive solutions are nonlinear, and solving them is far more intricate, as one can rarely represent them by elementary functions in closed form: Instead, exact and analytic solutions of ODEs are in series or integral form. Graphical and numerical methods, applied by hand or by computer, may approximate solutions of ODEs and perhaps yield useful information, often sufficing in the absence of exact, analytic solutions.

Ordinary differential equations (ODEs) arise in many contexts of mathematics and science (social as well as natural). Mathematical descriptions of change use differentials and derivatives. Various differentials, derivatives, and functions become related to each other via equations, and thus a differential equation is a result that describes dynamically changing phenomena, evolution, and variation. Often, quantities are defined as the rate of change of other quantities (for example, derivatives of displacement with respect to time), or gradients of quantities, which is how they enter differential equations.

Specific mathematical fields include geometry and analytical mechanics. Scientific fields include much of physics and astronomy (celestial mechanics), meteorology (weather modelling), chemistry (reaction rates),biology (infectious diseases, genetic variation), ecology and population modelling (population competition), economics (stock trends, interest rates and the market equilibrium price changes).


...
Wikipedia

...