In computer science, information hiding is the principle of segregation, of the design decisions in a computer program that are most likely to change, thus protecting other parts of the program from extensive modification if the design decision is changed. The protection involves providing a stable interface which protects the remainder of the program from the implementation (the details that are most likely to change).
Written another way, information hiding is the ability to prevent certain aspects of a class or software component from being accessible to its clients, using either programming language features (like private variables) or an explicit exporting policy.
The term encapsulation is often used interchangeably with information hiding. Not all agree on the distinctions between the two though; one may think of information hiding as being the principle and encapsulation being the technique. A software module hides information by encapsulating the information into a module or other construct which presents an interface.
A common use of information hiding is to hide the physical storage layout for data so that if it is changed, the change is restricted to a small subset of the total program. For example, if a three-dimensional point (x,y,z) is represented in a program with three floating point scalar variables and later, the representation is changed to a single array variable of size three, a module designed with information hiding in mind would protect the remainder of the program from such a change.
In object-oriented programming, information hiding (by way of nesting of types) reduces software development risk by shifting the code's dependency on an uncertain implementation (design decision) onto a well-defined interface. Clients of the interface perform operations purely through it so if the implementation changes, the clients do not have to change.