*** Welcome to piglix ***

Indirect injection


Indirect injection in an internal combustion engine is fuel injection where fuel is not directly injected into the combustion chamber. Gasoline engines are usually equipped with indirect injection systems, wherein a fuel injector delivers the fuel at some point before the intake valve. Port injection refers to the spraying of the fuel onto the back of the intake port, which speeds up its evaporation.

An indirect injection diesel engine delivers fuel into a chamber off the combustion chamber, called a prechamber, where combustion begins and then spreads into the main combustion chamber. The prechamber is carefully designed to ensure adequate mixing of the atomized fuel with the compression-heated air.

The purpose of the divided combustion chamber is to speed up the combustion process, in order to increase the power output by increasing engine speed. The addition of a prechamber, however, increases heat loss to the cooling system and thereby lowers engine efficiency. The engine requires glow plugs for starting. In an indirect injection system the air moves fast, mixing the fuel and air. This simplifies injector design and allows the use of smaller engines and less tightly toleranced designs which are simpler to manufacture and more reliable. Direct injection, by contrast, uses slow-moving air and fast-moving fuel; both the design and manufacture of the injectors is more difficult. The optimisation of the in-cylinder air flow is much more difficult than designing a prechamber. There is much more integration between the design of the injector and the engine. It is for this reason that car diesel engines were almost all indirect injection until the ready availability of powerful CFD simulation systems made the adoption of direct injection practical.

Cylinder head of a small Kubota indirect injection diesel engine.

Top of head

Piston

Injector holes

Cylinder head

Injection Pump

Head close up

Combustion chambers

Glow plugs


...
Wikipedia

...