Indentation hardness tests are used in mechanical engineering to determine the hardness of a material to deformation. Several such tests exist, wherein the examined material is indented until an impression is formed; these tests can be performed on a macroscopic or microscopic scale.
When testing metals, indentation hardness correlates roughly linearly with tensile strength., but it is an imperfect correlation often limited to small ranges of strength and hardness for each indentation geometry. This relation permits economically important nondestructive testing of bulk metal deliveries with lightweight, even portable equipment, such as hand-held Rockwell hardness testers.
As of the direction of materials science continues towards studying the basis of properties on smaller and smaller scales, different techniques are used to quantify material characteristics and tendencies. Measuring mechanical properties for materials on smaller scales, like thin films, can not be done using conventional uniaxial tensile testing. As a result, techniques testing material "hardness" by indenting a material with an impression have been developed to determine such properties.
Hardness measurements quantify the resistance of a material to plastic deformation. Indentation hardness tests compose the majority of processes used to determine material hardness, and can be divided into two classes: microindentation and macroindentation tests. Microindentation tests typically have forces less than 2 N (0.45 lbf). Hardness, however, cannot be considered to be a fundamental material property. Instead, it represents an arbitrary quantity used to provide a relative idea of material properties. As such, hardness can only offer a comparative idea of the material's resistance to plastic deformation since different hardness techniques have different scales.
The main sources of error with indentation tests are poor technique, poor calibration of the equipment, and the strain hardening effect of the process. However, it has been experimentally determined through "strainless hardness tests" that the effect is minimal with smaller indentations.
Surface finish of the part and the indenter do not have an effect on the hardness measurement, as long as the indentation is large compared to the surface roughness. This proves to be useful when measuring the hardness of practical surfaces. It also is helpful when leaving a shallow indentation, because a finely etched indenter leaves a much easier to read indentation than a smooth indenter.