In-water recompression (IWR) or underwater oxygen treatment is the emergency treatment of decompression sickness (DCS) of sending the diver back underwater to allow the gas bubbles in the tissues, which are causing the symptoms, to resolve. It is a risky procedure that should only ever be used when the time to travel to the nearest recompression chamber is too long to save the victim's life.
Carrying out in-water recompression when there is a nearby recompression chamber or without special equipment and training is never a favoured option. The risk of the procedure comes from the fact that a diver suffering from DCS is seriously ill and may become paralysed, unconscious or stop breathing whilst under water. Any one of these events is likely to result in the diver drowning or further injury to the diver during a subsequent rescue to the surface.
Treatment of DCS utilizing the US Navy Treatment Table 6 with oxygen at 18m is a standard of care. Significant delay to treatment, difficult transport, and facilities with limited experience may lead one to consider on site treatment. Surface oxygen for first aid has been proven to improve the efficacy of recompression and decreased the number of recompression treatments required when administered within four hours post dive. IWR to 9 m breathing oxygen is one option that has shown success over the years IWR is not without risk and should be undertaken with certain precautions. IWR would only be suitable for an organised and disciplined group of divers with suitable equipment and practical training in the procedure.
The principle behind IWR treatment is the same as that behind the treatment of DCS in a recompression chamber: an increase in ambient pressure will reduce the volume of the bubbles allowing better blood transport downstream of the bubbles. If the casualty can breathe pure oxygen further improvements will occur because the increase in the proportion of oxygen in the blood may keep previously oxygen-starved tissues alive and the oxygen will remove other inert gases from the bubbles making the bubbles smaller.