*** Welcome to piglix ***

Immunoelectrophoresis


Immunoelectrophoresis is a general name for a number of biochemical methods for separation and characterization of proteins based on electrophoresis and reaction with antibodies. All variants of immunoelectrophoresis require immunoglobulins, also known as antibodies, reacting with the proteins to be separated or characterized. The methods were developed and used extensively during the second half of the 20th century. In somewhat chronological order: Immunoelectrophoretic analysis (one-dimensional immunoelectrophoresis ad modum Grabar), crossed immunoelectrophoresis (two-dimensional quantitative immunoelectrophoresis ad modum Clarke and Freeman or ad modum Laurell), rocket-immunoelectrophoresis (one-dimensional quantitative immunoelectrophoresis ad modum Laurell), fused rocket immunoelectrophoresis ad modum Svendsen and Harboe, affinity immunoelectrophoresis ad modum Bøg-Hansen.

Agarose as 1% gel slabs of about 1 mm thickness buffered at high pH (around 8.6) is traditionally preferred for the electrophoresis as well as the reaction with antibodies. The agarose was chosen as the gel matrix because it has large pores allowing free passage and separation of proteins, but provides an anchor for the immunoprecipitates of protein and specific antibodies. The high pH was chosen because antibodies are practically immobile at high pH. An electrophoresis equipment with a horizontal cooling plate was normally recommended for the electrophoresis.

Immunoprecipitates may be seen in the wet agarose gel, but are stained with protein stains like Coomassie Brilliant Blue in the dried gel. In contrast to SDS-gel electrophoresis, the electrophoresis in agarose allows native conditions, preserving the native structure and activities of the proteins under investigation, therefore immunoelectrophoresis allows characterization of enzyme activities and ligand binding etc. in addition to electrophoretic separation.

The immunoelectrophoretic analysis ad modum Grabar is the classical method of immunoelectrophoresis. Proteins are separated by electrophoresis, then antibodies are applied in a trough next to the separated proteins and immunoprecipitates are formed after a period of diffusion of the separated proteins and antibodies against each other. The introduction of the immunoelectrophoretic analysis gave a great boost to protein chemistry, some of the very first results were the resolution of proteins in biological fluids and biological extracts. Among the important observations made were the great number of different proteins in serum, the existence of several immunoglobulin classes and their electrophoretic heterogeneity.


...
Wikipedia

...