Eugene C. Butcher | |
---|---|
Born | January 6, 1950 |
Citizenship | American |
Nationality | United States |
Fields | Immunology |
Institutions | Stanford University |
Alma mater | |
Notable awards |
|
Eugene C. "Gene" Butcher, M.D. (born 6 January 1950) is an immunologist and a Professor of Pathology at Stanford University
Eugene Butcher gained an undergraduate degree in chemistry from Massachusetts Institute of Technology in Boston and an MD from Washington University in St. Louis. In 1976 he began a residency in pathology at Stanford University in California, and was awarded a professorship in the Department of Pathology there. He is also staff physician and Director of the Serology and Immunology Section at the Veterans Administration, Palo Alto Health Care System.
Butcher and his research team study the trafficking of white blood cells (lymphocytes, dendritic cells, monocytes, etc.), including their interactions with the endothelial lining of blood vessels at sites of leukocyte extravasation, and their chemotactic responses in tissues. These events regulate immune responses by controlling the access of leukocytes to sites of inflammatory or immune reaction in the body. He and his research team have shown that lymphocytes use a variety of different adhesion molecules or "homing receptors" to recognize organ (and/or inflammation)-specific vascular ligands or "addressins" that define the tissue position (address) of blood vessels in the body. Their studies have shown that these adhesion receptors act coordinately with G protein-linked serpentine chemoattractant receptors in a multi-step process that controls the specificity and provides combinatorial diversity in leukocyte trafficking.
A major focus of the group is on understanding the physiologic significance and control of targeted lymphocyte trafficking. To this end, they are studying the specialized homing mechanisms and functional properties of tissue infiltrating lymphocytes involved in local immune, autoimmune and regulatory responses in the GI tract (intestines, liver), skin, lungs, and other sites. Genetic, antibody and small molecule-based approaches allow them to define the role of trafficking molecules and mechanisms in models of autoimmune and infectious diseases. The team is also exploring mechanisms that imprint lymphocyte homing and chemokine receptor expression during tissue-specific immune responses, and are developing techniques to recapitulate such regulation in vitro for cell targeting and therapy. Dendritic cells (DC) play an important role in this context, and they are interested in the mechanisms by which specialized DC “interpret” and process local environmental signals (e.g. vitamins, metabolites, cytokines) to control T cell trafficking and regulatory vs. effector activities.