*** Welcome to piglix ***

Ifsar


Interferometric synthetic aperture radar, abbreviated InSAR (or deprecated IfSAR), is a radar technique used in geodesy and remote sensing. This geodetic method uses two or more synthetic aperture radar (SAR) images to generate maps of surface deformation or digital elevation, using differences in the phase of the waves returning to the satellite or aircraft. The technique can potentially measure millimetre-scale changes in deformation over spans of days to years. It has applications for geophysical monitoring of natural hazards, for example earthquakes, volcanoes and landslides, and in structural engineering, in particular monitoring of subsidence and structural stability.

Synthetic aperture radar (SAR) is a form of radar in which sophisticated processing of radar data is used to produce a very narrow effective beam. It can be used to form images of relatively immobile targets; moving targets can be blurred or displaced in the formed images. SAR is a form of active remote sensing – the antenna transmits radiation that is reflected from the image area, as opposed to passive sensing, where the reflection is detected from ambient illumination. SAR image acquisition is therefore independent of natural illumination and images can be taken at night. Radar uses electromagnetic radiation at microwave frequencies; the atmospheric absorption at typical radar wavelengths is very low, meaning observations are not prevented by cloud cover.

SAR makes use of the amplitude and the absolute phase of the return signal data. In contrast, interferometry uses differential phase of the reflected radiation, either from multiple passes along the same trajectory and/or from multiple displaced phase centers (antennas) on a single pass. Since the outgoing wave is produced by the satellite, the phase is known, and can be compared to the phase of the return signal. The phase of the return wave depends on the distance to the ground, since the path length to the ground and back will consist of a number of whole wavelengths plus some fraction of a wavelength. This is observable as a phase difference or phase shift in the returning wave. The total distance to the satellite (i.e., the number of whole wavelengths) is known based on the time that it takes for the energy to make the round trip back to the satellite—but it is the extra fraction of a wavelength that is of particular interest and is measured to great accuracy.


...
Wikipedia

...