*** Welcome to piglix ***

Ideal chain


An ideal chain (or freely-jointed chain) is the simplest model to describe polymers, such as nucleic acids and proteins. It only assumes a polymer as a random walk and neglects any kind of interactions among monomers. Although it is simple, its generality gives insight about the physics of polymers.

In this model, monomers are rigid rods of a fixed length l, and their orientation is completely independent of the orientations and positions of neighbouring monomers, to the extent that two monomers can co-exist at the same place. In some cases, the monomer has a physical interpretation, such as an amino acid in a polypeptide. In other cases, a monomer is simply a segment of the polymer that can be modeled as behaving as a discrete, freely jointed unit. If so, l is the Kuhn length. For example, chromatin is modeled as a polymer in which each monomer is a segment approximately 14-46 kbp in length.

N mers form the polymer, whose total unfolded length is:

In this very simple approach where no interactions between mers are considered, the energy of the polymer is taken to be independent of its shape, which means that at thermodynamic equilibrium, all of its shape configurations are equally likely to occur as the polymer fluctuates in time, according to the Maxwell–Boltzmann distribution.

Let us call the total end to end vector of an ideal chain and the vectors corresponding to individual mers. Those random vectors have components in the three directions of space. Most of the expressions given in this article assume that the number of mers N is large, so that the central limit theorem applies. The figure below shows a sketch of a (short) ideal chain.


...
Wikipedia

...