*** Welcome to piglix ***

ITS-90


The International Temperature Scale of 1990 (ITS-90) published by the Consultative Committee for Thermometry (CCT) of the International Committee for Weights and Measures (CIPM) is an equipment calibration standard for making measurements on the Kelvin and Celsius temperature scales. ITS–90 is an approximation of the thermodynamic temperature scale that facilitates the comparability and compatibility of temperature measurements internationally. It specifies fourteen calibration points ranging from 0.65±0 K to 1357.77±0 K (-272.50±0 °C to 1084.62±0 °C) and is subdivided into multiple temperature ranges which overlap in some instances. ITS-90 is the latest (as of 2014) of a series of International Temperature Scales adopted by CIPM since 1927. Adopted at the 1989 General Conference on Weights and Measures, it supersedes the International Practical Temperature Scale of 1968 (amended edition of 1975) and the 1976 "Provisional 0.5 K to 30 K Temperature Scale". CCT has also adopted a mise en pratique (practical instructions) in 2011. The lowest temperature covered by ITS-90 is 0.65 K. In 2000, the temperature scale was extended further, to 0.9 mK, by the adoption of a supplemental scale, known as the Provisional Low Temperature Scale of 2000 (PLTS-2000).

CCT ITS-90 is designed to represent the thermodynamic (absolute) temperature scale (referencing absolute zero) as closely as possible throughout its range. Many different thermometer designs are required to cover the entire range. These include helium vapor pressure thermometers, helium gas thermometers, standard platinum resistance thermometers (known as SPRTs, PRTs or Platinum RTDs) and monochromatic radiation thermometers.

Although the Kelvin and Celsius scales are defined using absolute zero (0 K) and the triple point of water (273.16 K and 0.01 °C), it is impractical to use this definition at temperatures that are very different from the triple point of water. Accordingly, ITS–90 uses numerous defined points, all of which are based on various thermodynamic equilibrium states of fourteen pure chemical elements and one compound (water). Most of the defined points are based on a phase transition; specifically the melting/freezing point of a pure chemical element. However, the deepest cryogenic points are based exclusively on the vapor pressure/temperature relationship of helium and its isotopes whereas the remainder of its cold points (those less than room temperature) are based on triple points. Examples of other defining points are the triple point of hydrogen (−259.3467 °C) and the freezing point of aluminum (660.323 °C).


...
Wikipedia

...