*** Welcome to piglix ***

Hypothetico-deductive model


The hypothetico-deductive model or method is a proposed description of scientific method. According to it, scientific inquiry proceeds by formulating a hypothesis in a form that could conceivably be falsified by a test on observable data. A test that could and does run contrary to predictions of the hypothesis is taken as a falsification of the hypothesis. A test that could but does not run contrary to the hypothesis corroborates the theory. It is then proposed to compare the explanatory value of competing hypotheses by testing how stringently they are corroborated by their predictions.

One example of an algorithmic statement of the hypothetico-deductive method is as follows:

One possible sequence in this model would be 1, 2, 3, 4. If the outcome of 4 holds, and 3 is not yet disproven, you may continue with 3, 4, 1, and so forth; but if the outcome of 4 shows 3 to be false, you will have to go back to 2 and try to invent a new 2, deduce a new 3, look for 4, and so forth.

Note that this method can never absolutely verify (prove the truth of) 2. It can only falsify 2. (This is what Einstein meant when he said, "No amount of experimentation can ever prove me right; a single experiment can prove me wrong.")

Additionally, as pointed out by Carl Hempel (1905–1997), this simple view of the scientific method is incomplete; a conjecture can also incorporate probabilities, e.g., the drug is effective about 70% of the time. Tests, in this case, must be repeated to substantiate the conjecture (in particular, the probabilities). In this and other cases, we can quantify a probability for our confidence in the conjecture itself and then apply a Bayesian analysis, with each experimental result shifting the probability either up or down. Bayes' theorem shows that the probability will never reach exactly 0 or 100% (no absolute certainty in either direction), but it can still get very close to either extreme. See also confirmation holism.


...
Wikipedia

...