*** Welcome to piglix ***

Hyperspectral imaging


Hyperspectral imaging, like other spectral imaging, collects and processes information from across the electromagnetic spectrum. The goal of hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene, with the purpose of finding objects, identifying materials, or detecting processes. Nowadays there are two branches of spectral imaging. There is Push broom scanner, which reads in an image over time, and Snapshot hyperspectral imaging which generates an image in an instance.

Whereas the human eye sees color of visible light in mostly three bands (red, green, and blue), spectral imaging divides the spectrum into many more bands. This technique of dividing images into bands can be extended beyond the visible. In hyperspectral imaging, the recorded spectra have fine wavelength resolution and cover a wide range of wavelengths.

Engineers build hyperspectral sensors and processing systems for applications in astronomy, agriculture, biomedical imaging, geosciences, physics, and surveillance. Hyperspectral sensors look at objects using a vast portion of the electromagnetic spectrum. Certain objects leave unique 'fingerprints' in the electromagnetic spectrum. Known as spectral signatures, these 'fingerprints' enable identification of the materials that make up a scanned object. For example, a spectral signature for oil helps geologists find new oil fields.

Figuratively speaking, hyperspectral sensors collect information as a set of 'images'. Each image represents a narrow wavelength range of the electromagnetic spectrum, also known as a spectral band. These 'images' are combined to form a three-dimensional (x,y,λ) hyperspectral data cube for processing and analysis, where x and y represent two spatial dimensions of the scene, and λ represents the spectral dimension (comprising a range of wavelengths).

Technically speaking, there are four ways for sensors to sample the hyperspectral cube: Spatial scanning, spectral scanning, snapshot imaging, and spatio-spectral scanning.


...
Wikipedia

...