In geometry, Thurston's geometrization theorem or hyperbolization theorem implies that closed atoroidal Haken manifolds are hyperbolic, and in particular satisfy the Thurston conjecture.
One form of Thurston's geometrization theorem states: If M is a compact irreducible atoroidal Haken manifold whose boundary has zero Euler characteristic, then the interior of M has a complete hyperbolic structure of finite volume.
The Mostow rigidity theorem implies that if a manifold of dimension at least 3 has a hyperbolic structure of finite volume, then it is essentially unique.
The conditions that the manifold M should be irreducible and atoroidal are necessary, as hyperbolic manifolds have these properties. However the condition that the manifold be Haken is unnecessarily strong. Thurston's hyperbolization conjecture states that a closed irreducible atoroidal 3-manifold with infinite fundamental group is hyperbolic, and this follows from Perelman's proof of the Thurston geometrization conjecture.
Thurston (1982, 2.3) showed that if a compact 3 manifold is prime, homotopically atoroidal, and has non-empty boundary, then it has a complete hyperbolic structure unless it is homeomorphic to a certain manifold (T2×[0,1])/Z/2Z with boundary T2.
A hyperbolic structure on the interior of a compact orientable 3-manifold has finite volume if and only if all boundary components are tori, except for the manifold T2×[0,1] which has a hyperbolic structure but none of finite volume (Thurston 1982, p. 359).
Thurston never published a complete proof of his theorem for reasons that he explained in (Thurston 1994), though parts of his argument are contained in Thurston (1986, 1998a, 1998b). Wall (1984) and Morgan (1984) gave summaries of Thurston's proof. Otal (1996) gave a proof in the case of manifolds that fiber over the circle, and Otal (1998) and Kapovich (2009) gave proofs for the generic case of manifolds that do not fiber over the circle. Thurston's geometrization theorem also follows from Perelman's proof using Ricci flow of the more general Thurston geometrization conjecture.