*** Welcome to piglix ***

Hyperbolic growth


When a quantity grows towards a singularity under a finite variation (a "finite-time singularity") it is said to undergo hyperbolic growth. More precisely, the reciprocal function has a hyperbola as a graph, and has a singularity at 0, meaning that the limit as is infinite: any similar graph is said to exhibit hyperbolic growth.

If the output of a function is inversely proportional to its input, or inversely proportional to the difference from a given value , the function will exhibit hyperbolic growth, with a singularity at .


...
Wikipedia

...