*** Welcome to piglix ***

Hyperaemia

Hyperaemia
Classification and external resources
ICD-9-CM 780.99
DiseasesDB 4466
MeSH D006940
[]

Hyperaemia, hyperæmia, or hyperemia (Greek ὑπέρ (hupér, “over”) + αἷμα (haîma, “blood”)) is the increase of blood flow to different tissues in the body. It can have medical implications, but is also a regulatory response, allowing change in blood supply to different tissues through vasodilation. Clinically, hyperaemia in tissues manifest as erythema, because of the engorgement of vessels with oxygenated blood. Hyperaemia can also occur due to a fall in atmospheric pressure outside the body.

Functional hyperaemia is an increase in blood flow to a tissue due to the presence of metabolites and a change in general conditions. When a tissue increases activity there is a well-characterized fall in the partial pressure of oxygen and pH, an increase in partial pressure of carbon dioxide, and a rise in temperature and the concentration of potassium ions. The mechanisms of vasodilation are predominantly local metabolites and myogenic effects. Increased metabolic activity of the tissue leads to a local increase in the extracellular concentration of such chemicals as adenosine, carbon dioxide, and lactic acid, and a decrease in oxygen and pH. These changes cause significant vasodilation. The reverse occurs when metabolic activity is slowed and these substances wash out of the tissues. The myogenic effect refers to the inherent attempt of vascular smooth muscle surrounding arterioles and arteries to maintain the tension in the wall of these blood vessels by dilating when internal pressure is reduced and to constrict when wall tension increases.

Functional hyperaemia, metabolic hyperemia, arterial hyperemia or active hyperaemia, is the increased blood flow that occurs when tissue is active.

It is widely thought that active hyperaemia is mediated by the increased synthesis and/or release of vasodilatory agents during periods of heightened cellular metabolism. The increase in cellular metabolism causes the increase in vasoactive metabolic byproducts. Some of the putative vasodilatory agents (associated with metabolism) include, but are not limited to: Carbon dioxide (CO2), hydrogen ion (H+), potassium (K+), adenosine (ADO), nitric oxide (NO)). These vasodilators released from the tissue act on local arterioles causing vasodilation, this causes a decrease in vascular resistance and allows an increase in blood flow to be directed toward the capillary bed of the active tissue. Consequently allowing blood flow to meet and match the metabolic demand of the tissue and prevents a mismatch between O2-demand O2-supply. Recent research has suggested that the locally produced vasodilators may be acting in a redundant manner, in which the antagonism of one dilator, be it pharmacologically or pathologically, may be compensated for by another in order to preserve blood flow to tissue. While the locus of blood flow control (at least in skeletal muscle tissue) is widely thought to reside at the level of the arteriole, research has begun to suggest that capillary endothelial cells may be coordinators of skeletal muscle blood flow during functional hyperaemia. It is thought that vasodilators (released from active muscle fibers) can stimulate a local capillary endothelial cells which, in turn, causes the conduction of a vasodilatory signal to upstream arterioles, this then elicits arteriolar vasodilation consequently, creating a pathway of least resistance so blood flow can be precisely direct to capillaries supplying the metabolically active tissue.


...
Wikipedia

...