Magnetohydrodynamics (MHD; also magneto-fluid dynamics or hydromagnetics) is the study of the magnetic properties of electrically conducting fluids. Examples of such magnetofluids include plasmas, liquid metals, salt water and electrolytes. The word "magnetohydrodynamics" is derived from magneto- meaning magnetic field, hydro- meaning water, and -dynamics meaning movement. The field of MHD was initiated by Hannes Alfvén, for which he received the Nobel Prize in Physics in 1970.
The fundamental concept behind MHD is that magnetic fields can induce currents in a moving conductive fluid, which in turn polarizes the fluid and reciprocally changes the magnetic field itself. The set of equations that describe MHD are a combination of the Navier-Stokes equations of fluid dynamics and Maxwell's equations of electromagnetism. These differential equations must be solved simultaneously, either analytically or numerically.
The first recorded use of the word magnetohydrodynamics is by Hannes Alfvén in 1942:
The ebbing salty water flowing past London's Waterloo Bridge interacts with the Earth's magnetic field to produce a potential difference between the two river-banks. Michael Faraday tried this experiment in 1832 but the current was too small to measure with the equipment at the time, and the river bed contributed to short-circuit the signal. However, by a similar process the voltage induced by the tide in the English Channel was measured in 1851.