*** Welcome to piglix ***

Hund's rules


In atomic physics, Hund's rules refers to a set of rules that German physicist Friedrich Hund formulated around 1927, which are used to determine the term symbol that corresponds to the ground state of a multi-electron atom. The first rule is especially important in chemistry, where it is often referred to as, simply, Hund's Rule.

The three rules are:

These rules specify in a simple way how usual energy interactions dictate the ground state term. The rules assume that the repulsion between the outer electrons is much greater than the spin–orbit interaction, which is in turn stronger than any other remaining interactions. This is referred to as the LS coupling regime.

Full shells and subshells do not contribute to the quantum numbers for total S, the total spin angular momentum and for L, the total orbital angular momentum. It can be shown that for full orbitals and suborbitals both the residual electrostatic term (repulsion between electrons) and the spin–orbit interaction can only shift all the energy levels together. Thus when determining the ordering of energy levels in general only the outer valence electrons must be considered.

Due to the Pauli exclusion principle, two electrons cannot share the same set of quantum numbers within the same system; therefore, there is room for only two electrons in each spatial orbital. One of these electrons must have, (for some chosen direction z) ms = ½, and the other must have ms = −½. Hund's first rule states that the lowest energy atomic state is the one that maximizes the total spin quantum number for the electrons in the open subshell. The orbitals of the subshell are each occupied singly with electrons of parallel spin before double occupation occurs. (This is occasionally called the "bus seat rule" since it is analogous to the behaviour of bus passengers who tend to occupy all double seats singly before double occupation occurs.)


...
Wikipedia

...