Hubble's law is the name for the observation in physical cosmology that:
Hubble's law is considered the first observational basis for the expansion of the universe and today serves as one of the pieces of evidence most often cited in support of the Big Bang model. The motion of astronomical objects due solely to this expansion is known as the Hubble flow.
Although widely attributed to Edwin Hubble, the law was first derived from the general relativity equations, in 1922, by Alexander Friedmann who published a set of equations, now known as the Friedmann equations, showing that the universe might expand, and presenting the expansion speed if this was the case. Then Georges Lemaître, in a 1927 article, proposed the expansion of the universe and suggested an estimated value of the rate of expansion, which when corrected by Hubble became known as the Hubble constant. However, though the Hubble constant is roughly constant in the velocity-distance space at this moment in time, the Hubble parameter , which the Hubble constant is the current value of, changes with time, so the term 'constant' is sometimes thought of as somewhat of a misnomer. Moreover, two years later Edwin Hubble confirmed the existence of cosmic expansion, and determined a more accurate value for the constant that now bears his name. Hubble inferred the recession velocity of the objects from their redshifts, many of which were earlier measured and related to velocity by Vesto Slipher in 1917.