*** Welcome to piglix ***

Horror vacui (physics)


In physics, horror vacui, or plenism, is commonly stated as "Nature abhors a vacuum." It is a postulate attributed to Aristotle, who articulated a belief, later criticized by the atomism of Epicurus and Lucretius, that nature contains no vacuums because the denser surrounding material continuum would immediately fill the rarity of an incipient void. He also argued against the void in a more abstract sense, (as "separable"), for example, that by definition a void, itself, is nothing, and following Plato, nothing cannot rightly be said to exist. Furthermore, in so far as it would be featureless, it could neither be encountered by the senses, nor could its supposition lend additional explanatory power. Hero of Alexandria challenged the theory in the first century CE, but his attempts to create an artificial vacuum failed. The theory was debated in the context of 17th-century fluid mechanics, by Thomas Hobbes and Robert Boyle, among others, and through the early 18th century by Sir Isaac Newton and Gottfried Leibniz.

In a void, no one could say why a thing once set in motion should stop anywhere; for why should it stop here rather than here? So that a thing will either be at rest or must be moved ad infinitum, unless something more powerful gets in its way.

Further, things are now thought to move into the void because it yields; but in a void this quality is present equally everywhere, so that things should move in all directions.

Further, the truth of what we assert is plain from the following considerations. We see the same weight or body moving faster than another for two reasons, either because there is a difference in what it moves through, as between water, air, and earth, or because, other things being equal, the moving body differs from the other owing to excess of weight or of lightness.

Now the medium causes a difference because it impedes the moving thing, most of all if it is moving in the opposite direction, but in a secondary degree even if it is at rest; and especially a medium that is not easily divided, i.e. a medium that is somewhat dense. A, then, will move through B in time G, and through D, which is thinner, in time E (if the length of B is equal to D), in proportion to the density of the hindering body. For let B be water and D air; then by so much as air is thinner and more incorporeal than water, A will move through D faster than through B. Let the speed have the same ratio to the speed, then, that air has to water. Then if air is twice as thin, the body will traverse B in twice the time that it does D, and the time G will be twice the time E. And always, by so much as the medium is more incorporeal and less resistant and more easily divided, the faster will be the movement.


...
Wikipedia

...