Names | |
---|---|
IUPAC name
4-(2-Dimethylaminoethyl)phenol
|
|
Other names
N,N-Dimethyltyramine; Peyocactin; Anhaline
|
|
Identifiers | |
3D model (Jmol)
|
|
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.007.920 |
KEGG | |
PubChem CID
|
|
|
|
|
|
Properties | |
C10H15NO | |
Molar mass | 165.24 g·mol−1 |
Appearance | colorless solid |
Melting point | 116 to 117 °C (241 to 243 °F; 389 to 390 K) |
Boiling point | 173 °C (343 °F; 446 K) at 11 mm Hg; sublimes at 140–150 °C |
high in: ethanol; ether; chloroform | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Hordenine (N,N-dimethyltyramine) is an alkaloid of the phenethylamine class that occurs naturally in a variety of plants, taking its name from one of the most common, barley (Hordeum species). Chemically, hordenine is the N-methyl derivative of N-methyltyramine, and the N,N-dimethyl derivative of the well-known biogenic amine tyramine, from which it is biosynthetically derived and with which it shares some pharmacological properties (see below). Currently, hordenine is widely sold as an ingredient of nutritional supplements, with the claims that it is a stimulant of the central nervous system, and has the ability to promote weight loss by enhancing metabolism. In experimental animals, given sufficiently large doses parenterally (i.e. by injection), hordenine does produce an increase in blood pressure, as well as other disturbances of the cardio-vascular, respiratory and nervous systems. These effects are generally not reproduced by oral administration of the drug in test animals, and there are virtually no scientific reports of the effects of hordenine in human beings. More detailed discussions of hordenine pharmacology and toxicology are given below this section.
The first report of the isolation from a natural source of the compound which is now known as hordenine was made by Arthur Heffter in 1894, who extracted this alkaloid from the cactus Anhalonium fissuratus (now reclassified as Ariocarpus fissuratus), naming it "anhalin". Twelve years later, E. Léger independently isolated an alkaloid which he named hordenine from germinated barley (Hordeum vulgare) seeds.Ernst Späth subsequently showed that these alkaloids were identical and proposed the correct molecular structure for this substance, for which the name "hordenine" was ultimately retained.
Hordenine is present in a fairly wide range of plants, notably amongst the cacti, but has also been detected in some algae and fungi. It occurs in grasses, and is found at significantly high concentrations in the seedlings of cereals such as barley (Hordeum vulgare) (~ 0.2%, or 2000 μg/g), proso millet (Panicum miliaceum) (~ 0.2%), and sorghum (Sorghum vulgare) (~0.1%). Reti, in his 1953 review of naturally occurring phenethylamines, notes that the richest source of hordenine is the cactus Trichocereus candicans (now reclassified as Echinopsis candicans), which was found to contain 0.5-5% of the alkaloid.