*** Welcome to piglix ***

Hopkinson's law


A magnetic circuit is made up of one or more closed loop paths containing a magnetic flux. The flux is usually generated by permanent magnets or electromagnets and confined to the path by magnetic cores consisting of ferromagnetic materials like iron, although there may be air gaps or other materials in the path. Magnetic circuits are employed to efficiently channel magnetic fields in many devices such as electric motors, generators, transformers, relays, lifting electromagnets, SQUIDs, galvanometers, and magnetic recording heads.

The concept of a "magnetic circuit" exploits a one-to-one correspondence between the equations of the magnetic field in an unsaturated ferromagnetic material to that of an electrical circuit. Using this concept the magnetic fields of complex devices such as transformers can be quickly solved using the methods and techniques developed for electrical circuits.

Some examples of magnetic circuits are:

Similar to the way that electromotive force (EMF) drives a current of electrical charge in electrical circuits, magnetomotive force (MMF) 'drives' magnetic flux through magnetic circuits. The term 'magnetomotive force', though, is a misnomer since it is not a force nor is anything moving. It is perhaps better to call it simply MMF. In analogy to the definition of EMF, the magnetomotive force around a closed loop is defined as:


...
Wikipedia

...