*** Welcome to piglix ***

Hop (networking)


In computer networking, a hop is one portion of the path between source and destination. Data packets pass through bridges, routers and gateways as they travel between source and destination. Each time packets are passed to the next network device, a hop occurs. The hop count refers to the number of intermediate devices through which data must pass between source and destination.

Since store and forward and other latencies are incurred through each hop, a large number of hops between source and destination implies lower real-time performance.

The hop count refers to the number of intermediate devices (like routers) through which data must pass between source and destination, rather than flowing directly over a single wire. Each router along the data path constitutes a hop, as the data is moved from one Layer 3 network to another. Hop count is therefore a basic measurement of distance in a network.

Hop count is a rough measure of distance between two hosts. A hop count of n means that n gateways separate the source host from the destination host. By itself, this metric is, however, not useful for determining the optimum network path, as it does not take into consideration the speed, load, reliability, or latency of any particular hop, but merely the total count. Nevertheless, some such as use hop count as their sole metric.

Each time a capable device receives these packets, that device modifies the packet, incrementing the hop count by one. In addition, the device compares the hop count against a time to live limit and discards the packet if its hop count is too high. This prevents packets from endlessly bouncing around the network in the event of routing errors. Routers are capable of managing hop counts, but other types of intermediate devices (e.g. hubs and bridges) are not.

Known as time to live (TTL) in IPv4, and hop limit in IPv6, this field specifies a limit on the number of hops a packet is allowed before being discarded. Routers modify IP packets as they are forwarded, decrementing the respective TTL or hop limit fields. Routers do not forward packets with a resultant field of 0 or less. This prevents packets from following a loop forever.


...
Wikipedia

...